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ABSTRACT

We reexamine Teller’s analysis of the effects of a varying gravitational constant G on the past
solar luminosity. We show that if Newtonian gravitation is viewed as a nonrelativistic limit of
Einstein’s theory, there exists (1) a constraint between G and the total mass M of the Sun and (2) a
change in the radiative energy density-temperature relation, which were not included in Teller’s
analysis and which change his result from L ~ G’ (found to be unacceptable) to L ~ constant,
independently of how G might vary with time.

Subject headings: cosmology — gravitation — Sun: general

I. INTRODUCTION

The possibility that the gravitational constant G
might have changed with cosmological time (Dirac
1937) has been discussed off and on for about 40 years.

Broadly speaking, the work and reasoning on this
subject can be characterized by three attitudes: (1) the
variation of G can be dismissed on the grounds that it is
disallowed by Einstein equations, (2) it can be easily
disproved at the Newtonian level using planetary data,
or (3) it can be disproved with a calculation first
performed by Teller (1948) on the past luminosity of
the Sun. This last argument is actually the one most
often quoted and referred to in the literature dealing
with a varying G.

As for the first argument, we shall show in this paper
that Einstein’s equations do not actually require the
constancy of G. For an object (like the Sun or a planet)
of mass M, we shall show that the only constraint is
GM = constant and that no statement about G and M
separately can be derived from the theory.

As an immediate application of the constancy of the
product GM, it follows that planetary distances R and
periods P, which, from Kepler’s third law and the
conservation of angular momentum per unit mass, can
be shown to go like

R 1 p 1
GM’ (GM)?’
are predicted to be constant in time no matter what G
does. Observational (radar) data can therefore be used
to confirm (if R, =0), or disprove (if R, # 0),
equation (1), but not to put limits on G (Canuto, Hsieh,
and Owen 1979a, b).

The third and final argument concerning the lumi-

nosity dependence on G is more delicate. We shall
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show that Teller’s well-known result

GM)’
L~ % ~G7 Q)
should be replaced by
GM)’
~ # ~ constant . 3)

The appearance of the two extra powers of G in the
denominator is due to a change (overlooked by Teller)
in the relation between equilibrium radiative energy
density and temperature. Finally, the last step in
equation (3) is due to a dynamical constraint men-
tioned before, namely that the product GM must
remain constant, independently of whether G varies or
not. The results

R ~ const.,, P ~ const., L ~ const., 4)

are due to the fact that the way G enters in the
Newtonian or Einsteinian formalism is such as to
make the final expression for R, P, and L invariant
under the transformation

G = constant — G = G(1) . %)

The Newtonian framework is therefore unable to
differentiate between the two possibilities, and, al-
though it is legitimate to choose that G has remained
constant, no argument can be adduced to demonstrate
that G has not changed, nor can any observational
data be used to put limits on the time variation of G.

However interesting the question of the time varia-
tion of G might be, we see we cannot treat it as long
as we limit ourselves to the Newtonian and Einsteinian
framework, where G is in fact a ghost that can be
renormalized away entirely, as our analysis will show.

II. THE CONSTRAINT

Since the development of Lagrangian mechanics, it
is well known that with dynamical laws are associated
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conservation laws. Thus, if the dynamics is changed,
one must make sure, for consistency requirements,
that the conservation laws are appropriately modified.
For gravitation, this is most easily seen from Einstein’s
field equations

R, —%9,,R=—81nGT,,. )

In keeping with Teller’s spirit of modifying gravi-
tational dynamics, we assume G to be a scalar function
so that, in the Newtonian limit, the usual form of
“hydrostatic equilibrium” equation with a slowly
varying G is recovered.

Because of the Bianchi identity, the left-hand side of
equation (6) has zero divergence; it follows that the
right-hand side must satisfy the equation

(G1*), =0. (7

To understand the significance of this conservation
law, we consider an ideal fluid with total energy density
p, pressure p, and fluid velocity v, the energy momen-
tum tensor of which can be written as

Tuv = (P + p)Uqu - pguv . (8)

For the purpose of subsequent analysis, we shall
separate p into p,, the mass energy density, and u, the
internal energy density. We also make use of the
equation of state relating # and p so that

1
P=Po+“=/’o+mp~ ®

Contracting (7) with v, and using (8), we derive (for
any quantity 4, 4 = 4,,0")

ﬁ + (p + p)vﬂ;u = _pG/G 5 (10)
where we have used the equation of geodesic motion
vt =0.

If we denote by ¥ the comoving volume occupied by a
fluid element, we have (Misner, Thorne, and Wheeler
1973, exercise [22.1])

v, =V,
so that (10) can be rewritten as
p+(p+p)V/V=-pG/G. 11

When G is constant, equation (11) reduces to the well-
known energy conservation equation (Weinberg 1972,
eq. [14.2.19]). With the aid of (9), equation (11) can be
further transformed to read

(GpoV) | (WV'G)y
® GpoV) T wV'G)

At this point, we recall that in addition to the equations
of energy and momentum balance, another equation,
expressing the conservation of rest mass or particle
number, is usually postulated. In any (relativistic)
theory with mass-energy equivalence, this equation
must be compatible with the energy conservation

0. (12)
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equation, equation (12), in the sense that the two must
be identical when a pressureless fluid is considered.
Thus, from equation (12), with u = 0, we find that in a
G-varying scheme the relation expressing the rest-mass
or baryon number conservation must read

(GpoV) =0.

Applying the above relation to a star, such as the Sun,
we find

GM = constant , (13)

where M is the total rest mass. This is one of the
constraints referred to earlier.

To complete the analysis, we need the relation
between the radiation energy density p, and the
temperature 7, which Teller took to be the standard
one, p, ~ T*. This relation, however, is not valid in a
G-varying scheme, as can be seen from equation (12).
For radiation (eq. [9]: p = p,, po =0, and y = 4/3),
we obtain

1 1 1

fGVE TG

Using (13) and (14), we can now analyze the G-
dependence of the solar luminosity L, a reasonable
estimate of which is given by the ratio of the total

radiation energy to the photon diffusion time t, i.e. (R
is the radius of the Sun),

RPp, 1 RT*

T*. (14)

L — s 15

T G 1 (15)
where ,
RR R

T= =T = kpo, (16)
c ! c

/ being the photon mean free path and & the opacity (k
= 1/Ip,). Equations (16) and (15) yield (M ~ p,R?)

1 (TR* 1 (GM)*
GM k ~GM k

where we have used the hydrostatic equilibrium equa-
tion in the form (p, = mn, n being the number density)

L

, (17)

p nkT GMp
k=R R (18

Note that the presence of the factor G in (14) makes L
depend on M only through the combination GM. In
the case of electron scattering opacity, k = const., and
S0

L ~ (GM)?® ~ constant (19)

because of (13).

For the opacity considered by Teller (the modified
Kramers opacity) we must be careful because (14) is
involved in the derivation of k. Radiative equilibrium
demands

j=kp,. (20)
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where j is the emission rate from the physical process
under consideration (e.g., free-free transition).
Because of (14), it follows that & is proportional to G.
Teller’s opacity law

k~ poT > 1)
must therefore be changed to
k~GpoT™3, (22)
so that equation (17) becomes
1 (GM)* 1 (GM)* GM)’
Ll @M LG (GM)!
GM Gp, GM GM (GM)
(23)
instead of Teller’s equation (4)
L~ (GM)/M?. 29

The two factors of G in the denominator of (23) are
both due to relation (14). On the basis of (13), we see
that equation (23) yields

L ~ const.

We conclude therefore that within the Newtonian
framework, the Sun’s luminosity is constant in time,
independently of whether G varies or not (provided
that the modified Kramers opacity is used).
Contrary to Teller’s analysis, in which G and M
appear in the final result with different powers, in the
present treatment they appear only through the com-
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bination GM, which is dynamically constrained to be
constant. Such a combination deprives G of the
identity needed to qualify as an independent variable;
in fact, a redefinition of M can be made so as to make G
disappear entirely from the problem, which is in effect
what our analysis has shown. For this reason, it is often
correctly stated that, within the Newtonian scheme, G
does not actually exist and that talking about a
variation of G is meaningless (McCrea 1979).

In the same spirit, attempts at using planetary
physics (within the Newtonian scheme) cannot be-
expected to yield any information about a varying G
since G, entering the problem only via Kepler’s law,
®*R® = GM, appears multiplied by M and because of
(13) it drops out of the problem entirely (Canuto,
Hsieh, and Owen 19794, b).

These examples clearly indicate the existence of a
dilemma: one is interested in the theoretical impli-
cations of a time-varying gravitational “constant,”
but at the same time one is prevented from obtaining
the desired answer within the existent formalism: the
Newtonian and Einsteinian schemes were in fact not
constructed with such a possibility in mind.

This important question is bound to remain un-
answered unless a new formalism is constructed which,
in addition to all the successful features of the
Einstein’s theory, possess the extra latitude necessary
to study the consequences of a possible varying G
(Canuto, Hsieh, and Owen 1979a, b).

The authors would like to thank Dr. G. C. McVittie
for a critical reading of the manuscript.
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